Version of Record: https://www.sciencedirect.com/science/article/pii/S0304380016304124
Manuscript_a25ef2cf17d7d283f1f46be4f6c3cfc8

Management strategy evaluation using the individual-based, multispecies modeling
approach OSMOSE

Arnaud Griiss'>**", William J. Harford?>>®, Michael J. Schirripa®<, Laure Velez*>9,
Skyler R. Sagarese®¢, Yunne-Jai Shin*>f and Philippe Verley*#

!Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric
Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA

2Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and
Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL,
33149, USA

3Southeast Fisheries Science Center, Sustainable Fisheries Division, 75 Virginia Beach Drive,
Miami, FL, 33149-1099, USA

*Institut de Recherche pour le Développement, UMR MARBEC 248, Centre de Recherche
Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet, CS 30171, 34203 Sete
cedex, France

SUniversité de Montpellier, place Eugéne Bataillon, Batiment 24, CC 093, 34095 Montpellier
cedex 05, France

Author email addresses
dagruss@rsmas.miami.edu
byilliam.harford@noaa.gov
°michael.schirripa@noaa.gov
dlaure.velez@ird.fr
skyler.sagarese@noaa.gov
fyunne-jai.shin@ird.fr
9philippe.verley@ird.fr

Corresponding author

Dr. Arnaud Griiss

Department of Marine Biology and Ecology

Rosenstiel School of Marine and Atmospheric Science, University of Miami
4600 Rickenbacker Causeway

Miami, FL, 33149

United States of America

Telephone: (01) 305 421 4262

Email: agruss@rsmas.miami.edu

1

© 2016 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304380016304124
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304380016304124

Highlights

We developed a management strategy evaluation framework for the OSMOSE model.
We applied this framework to the West Florida Shelf ecosystem and red grouper.
Alternative total allowable catch (TAC) strategies were evaluated for red grouper.
Lower acceptable risks of overfishing resulted in higher biomass for red grouper.
TAC update frequency impact was small in a context of episodic environmental

events.



ABSTRACT

End-to-end ecosystem modeling platforms, including OSMOSE, are key tools for
informing ecosystem-based fisheries management (EBFM). End-to-end models ideally
implement two-way interactions between model components, yet two-way interactions
between high trophic level (HTL) functional groups and humans (fisheries managers and
fishers) are currently missing in OSMOSE. We developed a management strategy evaluation
(MSE) framework for OSMOSE, which allows for feedback between HTL functional groups
and fisheries managers. This framework couples OSMOSE to a management procedure
integrating decision rules and accounting for scientific uncertainty and the acceptable risk of
overfishing. We applied the MSE framework to the OSMOSE model of the West Florida
Shelf, so as to conduct an evaluation of total allowable catch (TAC) strategies for red grouper
(Epinephelus morio) in a context of episodic events of natural mortality. Our simulations
indicate that TAC strategies that assume higher scientific uncertainty and/or lower acceptable
risk of overfishing result in higher biomass-related metrics for red grouper. However, the
levels of scientific uncertainty and acceptable risk of overfishing impose a trade-off between
biomass-related and catch-related metrics for red grouper. Our simulations also indicate that
updating red grouper TAC more frequently in a context of episodic events of natural mortality
does not have a large impact on biomass-related and catch-related metrics for red grouper and
other functional groups. The MSE we conducted for red grouper is strategic, and its outcomes,
which were obtained under a specific set of assumptions, must be considered preliminary. We
discuss how future research could help enhance understanding of the possible impacts of TAC
strategies for red grouper. The MSE framework designed for OSMOSE links the dynamics of
HTL functional groups to that of fisheries managers, thereby allowing OSMOSE to be better

suited for informing EBFM. This framework is an invaluable asset in assessing the



performance of fisheries management strategies, but could also be used for other purposes,

such as the evaluation of research monitoring programs.

Keywords: management strategy evaluation; ecosystem modeling; end-to-end model; total
acceptable catch; risk of overfishing; Gulf of Mexico



1. Introduction

Ecosystem-based fisheries management (EBFM), which recognizes the physical,
biological and socio-economic complexities of managing marine resources, is gaining
increasing momentum around the world (Pikitch et al., 2004; Link and Browman, 2014;
Patrick and Link, 2015). End-to-end models of marine ecosystems, which attempt to represent
an entire ecological system, including high trophic level (HTL) functional groups, low trophic
level (LTL) organisms (e.g., plankton, benthos), humans (fisheries managers and fishers), and
the associated abiotic environment, are key tools for influencing and strengthening EBFM
(Travers et al., 2007; Fulton, 2010; Shin et al., 2010; Steele et al., 2013). Major end-to-end
modeling platforms include the biogeochemical modeling approach Atlantis (Fulton et al.,
2004, 2007, 2011), the trophodynamic modeling framework Ecopath with Ecosim (EwE) with
Ecospace (Pauly et al., 2000; Christensen and Walters, 2004; Steenbeek et al., 2016), and the
individual-based, multi-species modeling approach OSMOSE (Object-oriented Simulator of
Marine ecOSystem Exploitation) (Travers-Trolet et al., 2014a; Grdss et al., 2016). Atlantis,
EwE with Ecospace and OSMOSE are increasingly being used worldwide, in particular to
conduct multi-model evaluations of the ecosystem impacts of fishing (Travers et al., 2010;
Smith et al., 2011, 2015; Shin et al., 2012).

End-to-end ecosystem models are more appealing for addressing issues related to
EBFM if they implement two-way interactions between model components, including
between LTL and HTL functional groups and between HTL functional groups and humans
(Travers et al., 2007; Travers et al., 2010; Rose, 2012). Within the Atlantis modeling
platform, numerous sub-models simulate features and processes crucial to a functioning
marine ecosystem, allowing Atlantis to easily bridge LTL, HTL and human drivers and
processes (Fulton et al., 2011). Moreover, recent developments enable EwWE with Ecospace to

implement two-way interactions if need be (Steenbeek et al., 2016). These recent



developments include an implementation of EwE in the Fortran programming language for
permitting feedback between HTL and LTL functional groups (Akoglu et al., 2015), the
capability to couple EWE with Ecospace to a management procedure (Dichmont et al., 2013),
and the integration of a fishing fleet dynamics sub-model into Ecospace (de Mutsert et al.,
2015). By contrast, two-way interactions between LTL and HTL functional groups and
between HTL functional groups and humans are currently nonexistent or limited in OSMOSE
models. OSMOSE applications generally represent LTL functional groups in the form of
biomass fields serving as potential food for HTL functional groups, with no feedback between
HTL and LTL groups (Marzloff et al., 2009; Brochier et al., 2013; Fu et al., 2013; Grdss et
al., 2015, 2016). An exception to this general pattern is the most recent Southern Benguela
application of OSMOSE, where the individual-based model simulating the dynamics of HTL
functional groups is two-way coupled to a biogeochemical model, allowing the biomasses of
plankton groups to vary in response to predation by HTL functional groups (Travers-Trolet et
al., 2014a, 2014b). Furthermore, there is currently no two-way interaction between HTL
functional groups and humans in OSMOSE, despite the fact that fishing mortality rates or
fisheries catches can be substantially altered in the real world as a management response to
changes in the biomass of HTL functional groups. For example, in the United States (U.S.),
the 2006 reauthorization of the Magnuson-Stevens Fishery Conservation and Management
Act (MSA) requires the regular update of total allowable catches (TACs) based on the
probability of overfishing of the target species (MSRA, 2006; Federal Register, 2008).
Therefore, there is a pressing need to link the dynamics of the HTL functional groups
represented in OSMOSE to actions taken by humans, so as to enhance the capability of
OSMOSE as an end-to-end modeling approach to provide advice for EBFM.

The development of a management strategy evaluation (MSE) framework for

OSMOSE would offer an opportunity to implement two-way interactions between HTL



functional groups and fisheries managers. MSE is a process designed to simulate alternative
fisheries management strategies and to identify those strategies that are robust to uncertainties
and natural variation and that balance management objectives (Smith et al., 1999; Kell et al.,
2007; Butterworth et al., 2010; Holland, 2010; Bunnefeld et al., 2011; Punt et al., 2014). MSE
involves the two-way coupling of an “operating model” generating “true” ecosystem
dynamics, including natural variations in the study system, with a management procedure
(MP) dictating fisheries management measures such as TACs, target fishing mortality rates,
or fishing effort limits (Smith, 1994; Schnute et al., 2007; Kraak et al., 2008). The core of the
MP is a decision rule, which dynamically modifies management actions based on the data
sampled from the operating model and specific stock assessment methods (Punt, 2006;
Schnute et al., 2007; Holland, 2010). It is also possible to integrate into an MSE framework
an implementation model accounting for the fact that the fisheries catches, fishing mortality
rates or fishing efforts prescribed by the MP may be exceeded or may not be achieved in the
real world due to, e.g., poor enforcement or fisher behavior (Holland, 2010, Bunnefeld et al.,
2011). Many MSE frameworks integrate an assessment model, while others do not. However,
those MSE frameworks that do not integrate an assessment model generally account for stock
assessment error or uncertainty in stock assessments (Baldursson et al., 1996; Danielsson et
al., 1997; Punt, 2006; Holland, 2010; Punt et al., 2014; Steenbeek et al., 2016). For example,
the MSE framework developed by Baldursson et al. (1996) and Danielsson et al. (1997) for
evaluating TAC strategies for Icelandic cod (Gadus morhua) merely mimics uncertainty in
stock assessments.

In the present study, we introduce the MSE framework that we developed for the
OSMOSE modeling platform, and we then apply this framework to the OSMOSE model of
the West Florida Shelf in the Gulf of Mexico (GOM) for the 2000s (“OSMOSE-WFS”)

(Griss et al., 2015, 2016). Our MSE framework currently does not include an assessment



model (although it does account for uncertainty in stock assessments and includes observation
and implementation errors); it is essentially limited to fisheries management actions through
decision rules applied to OSMOSE output, since the primary intent of the current MSE
framework for OSMOSE is the simulation and strategic testing of alternative TAC strategies.
In the following, we first provide an overview of the OSMOSE modeling approach, which
helps elucidate the decisions made regarding the structure and assumption of our MSE
framework. We then present the MSE framework that we designed for OSMOSE. Next, we
briefly describe the current version of the OSMOSE-WFS model, before applying our MSE
framework to red grouper (Epinephelus morio), a species of high economic importance in the

GOM. Finally, we discuss the strengths, limitations and perspectives of our work.

2. Material and methods
2.1. The OSMOSE modeling approach

OSMOSE is a two-dimensional, individual-based, multi-species modeling approach
which explicitly simulates the whole life cycle of the major HTL functional groups of an
ecosystem (Shin and Cury, 2001, 2004). Its primary characteristic is that it does not specify
the diet compositions of HTL groups a priori but rather assumes that predation is an
opportunistic and size-based process, letting food web structure emerge from local predation
and competition interactions (Shin and Cury, 2001, 2004; Gruss et al., 2016). More precisely,
predation in OSMOSE depends on: (1) the overlap between predators and potential prey in
the horizontal dimension; (2) size adequacy between the predators and the potential prey (this
being determined by “predator/prey size ratios™); and (3) the accessibility of prey to predators
related to their vertical distribution and morphology (this being determined by means of

“accessibility coefficients”).



The basic units of OSMOSE are schools, which are composed of individuals that
belong to the same HTL group, and that have the same age, length and food needs and, at a
given time step, the same geographical coordinates (Shin and Cury, 2001, 2004). Thus, the
architecture of the HTL community in OSMOSE is hierarchical and organized around four
model classes: a “school” belongs to an age class (“cohort”), which itself belongs to a “HTL
group”, which itself belongs to the HTL community. Such a hierarchical architecture enables
the computation of output variables at different levels of aggregation (e.g., body length and
biomass can be assessed at the levels of the age group, HTL group and HTL community; Shin
et al., 2004; Travers et al., 2007; Marzloff et al., 2009; Grss et al., 2015). Due to the fact that
each school simulated in OSMOSE is represented from the egg stage to the terminal age,
which necessitates intensive calculation capacities and the integration of comprehensive
information on entire life cycles, usually no more than 15 HTL groups are explicitly
considered in OSMOSE models.

Functional groups that are not explicitly considered in OSMOSE, i.e., LTL functional
groups (plankton, benthos) and HTL organisms such as seabirds and marine mammals, are
implicitly taken into account in the modeling platform. The mortality of schools comprises
fishing mortality, predation mortality, starvation mortality, and diverse natural mortality
(Maiverse) due to causes other than starvation and predation by the HTL groups represented in
OSMOSE, i.e., catastrophic events such as red tides and predation by organisms not
considered in OSMOSE (e.g. seabirds and marine mammals) (Shin and Cury, 2001, 2004;
Gruiss et al., 2015). Moreover, in OSMOSE, LTL groups are considered in the form of
biomass fields serving as potential food for the HTL groups that are explicitly represented in
the modeling platform (Appendix A).

The current version of the OSMOSE modeling platform is “OSMOSE version 3

update 2” or “OSMOSE v3u2”, which essentially differs from the previous version of



OSMOSE (“OSMOSE version 3 update 1” or “OSMOSE v3ul”) in that it employs a “seeding
process” to initialize the modeled system (Appendix A). In OSMOSE v3u2, four successive
major events occur: (1) distribution of the schools in the horizontal dimension using specific
distribution maps; (2) mortalities (fishing mortality, predation mortality, starvation mortality,
and diverse natural mortality Maiverse); (3) somatic growth of schools based on their predation
success; and (4) reproduction. Currently, fishing mortality rates rather than fisheries catches
are used in OSMOSE to simulate the fishing mortality process. OSMOSE is a stochastic
modeling approach due to the distribution of limited numbers of schools in the horizontal
dimension based on distribution maps, the implementation of random walk movements within
the distribution areas of schools, and the computation of mortality rates using a “stochastic
mortality algorithm” (Gruss et al., 2016). The details of OSMOSE v3u2 can be found in
Appendix B.

OSMOSE is written in the Java programming language. The input files provided to

OSMOSE are CSV and netCDF files (http://www.osmose-model.orqg). Some of the CSV files

specify time series of fishing mortality rates or Maiverse, Which are useful to simulate mortality
scenarios with OSMOSE. It is also possible to define multipliers of LTL group biomasses to

simulate scenarios of environmental change with OSMOSE.

2.2. MSE framework for OSMOSE
We developed a relatively simple MSE framework for OSMOSE v3u2. Its core is the
specification of total allowable catches (TACs) or target fishing mortality rates using a
decision rule and a buffer accounting for scientific uncertainty and the risk of overfishing
considered acceptable (Fig. 1). The MSE process involves the following eight steps (Fig. 1):
(Step 1) OSMOSE is run to a steady-state, where the biomasses of all HTL groups

have reached equilibrium, at which point information on the modeled system is saved. This
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step requires a fully calibrated OSMOSE model with the fishing mortality rates of all HTL
groups, including those targeted by management efforts, maintained at their baseline (i.e.,
current) value.

(Step 2) OSMOSE is restarted from its steady-state and runs until the time of
implementing a management strategy comes.

(Step 3) When the time of implementing a management strategy comes, OSMOSE is
paused, and the spawning stock biomasses (SSBs) of the HTL groups targeted by
management efforts are sampled from OSMOSE to generate estimates of observed SSBs that
are provided to a management procedure (MP). This step requires a sampling module
mimicking research surveys, which currently consists of applying a lognormal error with a
mean of the log psurvey and a standard error of the log osurvey to the SSBs provided by
OSMOSE, as is often done in single-species MSE frameworks (Kraak et al., 2010; McGilliard
etal., 2011; Punt et al., 2014). Estimates for Hsurvey and osurvey Can be obtained, e.g., from
fisheries stock assessments.

(Step 4) Within the MP, limit fishing mortality rates (Fiim) or catch limits (overfishing
limits or OFLs) are determined from the observed SSBs, using a specific decision rule
integrating reference points (e.g., the maximum sustainable yield (MSY), and the SSB at the
annual fishing mortality rate resulting in MSY (SSBmsy)) (Fig. 2). We developed a framework
to produce reference points from OSMOSE for the MSE process (see Subsection 2.2.1).

(Step 5) Target fishing mortality rates or TACs are determined from Fiim or OFLSs,
respectively, using a buffer reflecting scientific uncertainty and an acceptable risk of
overfishing. As is usually the case in existing MSE frameworks, scientific uncertainty refers
here to uncertainty around limit reference points, i.e., Fiim or OFL, which are assumed to be
lognormally distributed with the standard error of the log given by oor. (Prager and Shertzer,

2010; Ralston et al., 2011; Punt et al., 2012; Gulf of Mexico Fishery Management Council,
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2014). One way to estimate the parameter oorL is to quantify the uncertainty associated with
fitting stock assessment models to data (Punt et al., 2012). However, such a quantification of
scientific uncertainty usually results in distributions of Fiim or OFL that are very tight (Ralston
etal., 2011; Punt et al., 2012). Ralston et al. (2011) estimated oorL for species of the U.S.
west coast by quantifying variation among multiple assessments of the same stock. The mean
oorL Of species of the U.S. west coast was found to be 0.36 (Ralston et al., 2011). Moreover,
the risk of overfishing considered acceptable is generally determined by fisheries managers,
but methodologies exist to quantify this risk, based on data availability and various criteria
such as life-history characteristics that increase vulnerability, time since the last stock
assessment, and stock status (Prager and Shertzer, 2010; Ralston et al., 2011; Punt et al.,
2012).

(Step 6) The target fishing mortality rates or TACs are passed to an implementation
module, which determines effective fishing mortality rates or effective TACs, taking into
account implementation error. The implementation module currently consists of applying a
lognormal error with a mean of the log pimp and a standard error of the log cimp to the target
fishing mortality rates or TACs prescribed by the MP, as is often done in single-species MSE
frameworks (e.g., Shertzer et al., 2008, 2010; Schirripa, 2015). Estimates for Mimp and cimp can
be obtained, e.g., from a retrospective analysis comparing past TACs to achieved fisheries
catches.

(Step 7) The effective fishing mortality rates or effective TACs are delivered to
OSMOSE, which restarts from where it was paused and runs until the time of evaluation
comes.

(Step 8) Steps 3 to 7 are repeated until the final year of simulations is reached (Fig. 1).

The framework detailed above necessitates a two-way coupling between OSMOSE

and the MP. This two-way coupling is achieved on a cluster of calculations, where a Java
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executable file encapsulating OSMOSE can communicate with the R software environment
where the sampling module, MP and implementation module are implemented. The
implementation of the MSE framework on a cluster of calculations is critical, given that
hundreds of OSMOSE replicates must be run for each scenario considered within the MSE
process (See Subsection 2.2.2).

Modifications were needed in the Java code of OSMOSE v3u2 to: (1) enable
OSMOSE to be paused and restarted; and (2) implement fisheries catches for the HTL groups
targeted by management efforts rather than apply fishing mortality rates when the MP
provides TACs to OSMOSE. First, changes in the Java code were made to save information
on all schools (i.e., abundance, body length, weight, etc.) in netCDF files when the time of
implementing a management strategy comes (i.e., when OSMOSE is paused and SSB
estimates are passed to the MP). These netCDF files are used along with OSMOSE input files
to ensure that OSMOSE restarts exactly from where it paused, putting aside the fact that the
fishing mortality rates or fisheries catches of the HTL groups targeted by management efforts
are updated (Fig. 1). Moreover, changes were introduced in the OSMOSE Java code to be
able to implement fisheries catches for the HTL groups targeted by management efforts rather
than apply fishing mortality rates to these HTL groups when the MP provides TACs rather
than target fishing mortality rates to OSMOSE. These changes allow one to: (1) identify all
the fishable schools of the HTL group under consideration, so as to determine the fishable
biomass of that HTL group; and (2) compute the catch in biomass of each school s of the HTL
group from the TAC for that group, the seasonality of fisheries catches, the biomass of school
s, and the fishable biomass of the HTL group. These computations make the assumption that
fishing mortality is distributed uniformly over space, which is also the assumption that is
being made when fishing mortality rates rather than fisheries catches are provided to

OSMOSE (Appendix B). In reality, the spatial distribution of fishing mortality is very rarely
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uniform, since fishers allocate their fishing effort spatially based on anticipated costs or
benefits. The simplistic assumption made in OSMOSE that fishing mortality is distributed
uniformly over space could be addressed through: (1) the provision of spatial heterogeneous
patterns of fishing effort to OSMOSE; or (2) the integration of fishers as explicit components

(i.e., objects) of the modeling platform and the simulation of fishers’ behavior.

2.2.1. Preliminary steps to the MSE process
Preliminary steps to the MSE process include: (1) the initiation of interactions with
fisheries managers and other stakeholders; and (2) the estimation of reference points.
Interactions with fisheries managers and other stakeholders are paramount to the
success of an MSE process (Punt et al., 2014). The MSE process and the scenarios tested
within this process must be designed around the main concerns of stakeholders (Holland,
2010; Punt et al., 2014; Schirripa, 2015), which ensures the selection of pertinent decision
rules and acceptable risks of overfishing within the MSE framework (Holland, 2010; Punt et
al., 2014). Moreover, discussions with fisheries managers and other stakeholders allow the
identification of a focused set of critical performance metrics, which facilitate the
communication of MSE outcomes (Holland, 2010; Plaganyi et al., 2014; Punt et al., 2014).
Reference points are necessary to the parameterization of decision rules in the MSE
framework. Such reference points can include the annual fishing mortality rate resulting in
MSY (Fmsy) and SSBmsy, but also annual fishing mortality rates and SSBs at which the
spawning potential ratio (SPR, i.e., the ratio of SSB per recruit over unfished SSB per recruit)
reaches a certain percentage. The equation of SSB per recruit (SSBR) is given in Appendix C.
We developed a framework for the estimation of reference points with OSMOSE on a
cluster of calculations. Within this framework, the annual fishing mortality rate of a HTL

group targeted by management efforts is varied from 0 to 2 year in increments of 0.01 while
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holding the annual fishing mortality rates of all the other HTL groups represented in
OSMOSE at their baseline (i.e., current) values. Subsequently, the resulting SSBs, fisheries
catches, mortality rates at age and weight of mature individuals at age at equilibrium are
estimated. Then, SSBR as a function of annual fishing mortality rate is calculated for the HTL
groups targeted by management efforts, according to Eq. C.1. Finally, generalized additive
models using penalized cubic regression splines (Wood, 2006) are fitted to simulated SSB,
fisheries catch and SSBR data points, from which MSY, Fmsy, SSBmsy, SPR, and the annual
fishing mortality rates and SSBs at which SPR reaches a certain percentage are estimated. The
procedure for estimating reference points described here is a relatively standard procedure in
the field of ecosystem modeling (Kaplan et al., 2013; Smith et al., 2014; Moffitt et al., 2015;

Griss et al., 2016).

2.2.2. Consideration of stochasticity and construction of scenarios

Because OSMOSE is a stochastic modeling approach, predictions can vary
substantially from one OSMOSE run to another. Therefore, multiple OSMOSE replicates
(ideally 100 or more) must be run under a given scenario within the MSE process.

The scenarios considered within the MSE process depend on the questions to be
tackled to address the concerns of fisheries managers and other stakeholders. These scenarios
can include management scenarios, pertaining, e.g., to the values attributed to the oorL
parameter and to the risk of overfishing considered acceptable, or the frequency of TAC
updates. Scenarios can also include environmental variability if stakeholders are concerned
with phenomena such as episodic events of natural mortality (e.g., red tides) or climate
change. The simplest and quickest option to simulate environmental changes is to alter time

series of Maiverse Or multipliers of LTL group biomasses directly in OSMOSE.
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2.3. Application of the MSE framework
2.3.1. The OSMOSE-WFS model

OSMOSE-WEFS is an OSMOSE model of the West Florida Shelf for the 2000s period,
which has been developed within the Gulf of Mexico Integrated Ecosystem Assessment (IEA)
program (Schirripa et al., 2012; Samhouri et al., 2014) (Fig. 3). The model is extensively
described in Grss et al. (2015, 2016). Therefore, we provide here only a brief presentation of
OSMOSE-WEFS. The OSMOSE-WFS model considered in the present study was
parameterized with fishing mortality rates. Its parameterization is described in Appendix D.

OSMOSE-WEFS explicitly represents the whole life cycle of the major pelagic-
demersal and benthic HTL groups of the West Florida Shelf ecosystem. Ten fish groups and
two crustacean HTL groups are explicitly considered in OSMOSE-WFS as either single
species or groups of species (listed in Table 1). Griss et al. (2016) identified three categories
of HTL groups in the West Florida Shelf ecosystem with OSMOSE-WFS: (1) “large
predators”, comprised of king mackerel (Scomberomorus cavalla), amberjacks, red grouper,
gag grouper (Mycteroperca microlepis), and red snapper (Lutjanus campechanus); (2) “small
predators”, consisting of reef carnivores, and large crabs; and (3) “forage fish and
invertebrates”, including the sardine-herring-scad complex, anchovies/silversides, coastal
omnivores, reef omnivores, and shrimps (Table 1). OSMOSE-WEFsS is forced by the biomasses
of nine LTL groups (plankton and benthos groups), which were estimated from SeaWiFS
(Sea-viewing Wide Field-of-view Sensor) data and an Ecopath model of the West Florida
Shelf (“WFS Reef fish Ecopath”; Chagaris, 2013; Chagaris et al., 2015).

The version of the OSMOSE-WFS model considered in the present study uses
OSMOSE v3u2. To meet the specifics of OSMOSE v3u2, the OSMOSE-WFS model
presented in Griss et al. (2016), which uses OSMOSE v3ul, was updated and recalibrated so

that biomasses of the HTL groups represented in the model matched biomasses observed on
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the West Florida Shelf in the 2000s. As in Gruss et al. (2015, 2016), we employed a recently
developed evolutionary algorithm (EA) (Oliveros-Ramos, 2014) to recalibrate OSMOSE-
WES. Details about the EA and the calibration process of OSMOSE-WEFS can be found in
Gruss et al. (2015). Once OSMOSE-WFS was recalibrated, we evaluated the model by
comparing the predicted diet compositions to observed diets, and the predicted trophic levels
(TLs) to TLs from the WFS Reef fish Ecopath model, as was done in Gruss et al. (2015,
2016). The evaluation process yielded results very similar to those reported in Griss et al.
(2016) and validated the new OSMOSE-WFS model. This is not surprising since the only
major difference between OSMOSE v3ul and OSMOSE v3u? is the implementation of a

seeding process in OSMOSE v3u? to initialize the modeled system.

2.3.2. Application of the MSE framework to red grouper

We applied the MSE framework described above to GOM red grouper, a fish
population of high economic importance. In the U.S. waters of the GOM, almost all red
groupers are found on the West Florida Shelf (Coleman et al., 1996, 2011; Lombardi-Carlson
et al., 2008; Sagarese et al., 2014); it is therefore appropriate to employ OSMOSE-WFS to
conduct an MSE for GOM red grouper.

In June 2014, the Gulf of Mexico Fishery Management Council (GMFMC)’s
Scientific and Statistical Committees (SSCs) passed a motion recommending that the GOM
IEA program work with the SSCs to evaluate TAC strategies for GOM red grouper and
determine how these strategies perform in a context of episodic events of natural mortality
(due to, e.g., red tides, oil spill, or release of contaminants). This motion was motivated by
field observations of red grouper mortality following severe red tides on the West Florida
Shelf (Driggers et al., 2016) and explicit consideration of red tide mortality within the red

grouper stock assessment model (SEDAR 42, 2015). In response to this motion, the GOM
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IEA team interacted with the fisheries managers and other stakeholders (fishing industry and
non-governmental organization representatives) during the GMFMC’s SSC meetings that
took place in 2014 and 2015, so as to develop MSE frameworks and select pertinent
performance metrics to communicate MSE outcomes. The OSMOSE MSE framework applied
to red grouper builds upon these interactions. Two other MSE frameworks are currently being
developed within the GOM IEA program: one using a single-species model simulating the
population dynamics of red grouper, and one using the Atlantis model of the GOM (“Atlantis-
GOM”; Ainsworth et al., 2015). MSE frameworks designed within the GOM IEA program
will complement red grouper stock assessments, especially because GOM red grouper
assessments run projections that do not integrate two-way interactions between the resource
and fisheries managers, contrary to MSE. We identified three questions to address with the
OSMOSE MSE framework: (1) How does the value of the buffer between the OFL and the
TAC influence fisheries management performance for red grouper? (2) How do TAC
strategies for red grouper perform in the presence of episodic events of natural mortality? and
(3) Is there a benefit to updating the TAC of red grouper more frequently in a context of
episodic events of natural mortality?

Currently, no completed MSE framework is available in the GOM. Since a decision
rule is needed for the OSMOSE MSE framework, we decided to use the “broken-stick harvest
control rule” that is shown in Fig. 2, which a decision rule that is commonly employed in
single-species MSE frameworks (A’mar et al., 2010; lanelli et al., 2011; Punt et al., 2012;
Moffitt et al., 2015). We fixed SSBcrit to 0.05*SSBmsy following A’mar et al. (2010) and Dorn
et al. (2001) (Fig. 2). Thus, the broken-stick harvest control rule for red grouper prescribes

that:
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OFL =0 if SSB < SSB
OFL = MSY SSB

crit

if SSB,,;, < SSB < SSB,,,

crit —

msy

OFL = MSY if SSB > SSB,,,

The TAC of GOM red grouper is determined from the OFL using a method called the
“P* approach” (Caddy and McGarvey, 1996; Prager et al., 2003; Shertzer et al., 2008; Prager
and Shertzer, 2010; Ralston et al., 2011; Punt et al., 2012; Gulf of Mexico Fishery
Management Council, 2014). P* is the acceptable probability that the TAC (referred to as
“acceptable biological catch” or “ABC” in the U.S.) exceeds the OFL, which corresponds to
the risk of overfishing considered acceptable in the OSMOSE MSE framework (Fig. 1). Fig.
4a summarizes the relationship between the OFL and the ABC under the assumption that the
OFL is lognormally distributed with the standard error of the log given by oorL. The buffer
between OFL and ABC is equal to zero when P* is set to 0.5, and is larger for lower values of
P* and higher values for oorL (Fig. 4a) (Ralston et al., 2011; Punt et al., 2012). Fig. 4b
displays how, given the distribution of the OFL (governed by the value of oorL), ABC is
determined so that the probability of ABC exceeding OFL is equal to P* (Prager and Shertzer,
2010).

To address Question 1 mentioned above, i.e., “How does the value of the buffer
between the OFL and the TAC influence fisheries management performance for red
grouper?”, we ran simulations with the MSE framework over a 30-year period for three
different values of P* (0.3, 0.4, and 0.5; because the GMFMC’s SSCs currently assume a P*
of 0.4) and a oorL fixed to 0.36 (following the recommendations of the GMFMC’s SSCs; Gulf
of Mexico Fishery Management Council, 2014). Therefore, we ran simulations with the MSE
framework for the following buffer values: 0.17, 0.09 and 0. It can be noted in Fig. 4a that

different combinations of P* and osorL can yield the same buffer value. We made the
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assumption that the TAC of red grouper is updated every three years, as is planned for future
red grouper stock assessments (Gulf of Mexico Fishery Management Council, 2014).

To address Question 2, i.e., “How do TAC strategies for red grouper perform in the
presence of episodic events of natural mortality?”, we ran simulations with the MSE
framework over a 30-year period in the presence or absence of episodic events of natural
mortality (M), under the assumptions that: (1) P* is equal to 0.3, 0.4, or 0.5; (2) oorL is equal
to 0.36; and (3) the TAC of red grouper is updated every three years. We defined a simple
scenario of episodic events of M, where the Maiverse Of red grouper is increased by a factor of
16 during the last six months of a year characterized by episodic events of M (Fig. 5). This
scenario is not meant to reflect what is likely to happen on the West Florida Shelf in the near
future, but rather to evaluate the performance of TAC strategies in the presence of episodic
natural events whose magnitude and frequency were determined to significantly affect red
grouper biomass in the OSMOSE MSE framework through preliminary test simulations. The
timing of episodic events of M (happening during the last six months of given years) was
chosen because severe red tide events generally occur during the second half of the year in the
GOM (Gulf of Mexico Fishery Management Council, 2014; Driggers et al., 2016).

Finally, to address Question 3, i.e., “Is there a benefit to updating the TAC of red
grouper more frequently in a context of episodic events of natural mortality?”, we ran
simulations with the MSE framework over a 30-year period under the assumptions that P* is
equal to 0.3, 0.4, or 0.5, oorv is equal to 0.36, and episodic events of M occur (as depicted in
Fig. 5), under the following four scenarios: (1) the TAC of red grouper is updated every three
years (baseline situation); (2) the TAC of red grouper is updated every year; (3) the TAC of
red grouper is updated every five years; and (4) the TAC of red grouper is updated every three
years and every year following an episodic event of M, i.c., a “reactive TAC strategy” is

implemented.
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Prior to performing all simulations, OSMOSE-WFS was run for 114 years to reach a
steady-state (Gruss et al., 2016, 2015). One hundred simulations were performed for each of
the combinations of parameters and scenarios mentioned above (e.g., 300 simulations to
address Question 1). We assumed no observation error and no implementation error (i.e., the
parameters Usurvey, osurvey, Mimp and oimp Were all set to zero) for all the simulations we
conducted. Assuming no observation error and no implementation error reduces stochasticity
in our simulations to stochasticity in the OSMOSE modeling platform. This setting, along
with the fact that we performed one hundred simulations for each of the combinations of
parameters and scenarios, facilitates the comparison of the outcomes obtained for different
combinations of parameters and/or under different scenarios.

To analyze MSE outcomes, we evaluated the following eight performance metrics: (1)
the probability that red grouper is not being overfished; (2) the probability that red grouper is
not undergoing stock collapse; (3) the net present value (NPV) of discounted revenues from
red grouper catch; (4) the stability of red grouper catch; (5) the mean biomass of large
predators other than red grouper (“other large predators”); (6) the mean biomass of forage fish
and invertebrates (hereafter simply referred to as “forage fish”); (7) the mean catch of other
large predators; and (8) the mean catch of forage fish. Higher values are targeted for each of
the eight performance metrics. We assessed each performance metric under a short-term
perspective (considering the first 10 years of simulations), a medium-term perspective
(considering the first 20 years of simulations), and a long-term perspective (considering the
30 years of simulations). Regarding the long-term perspective, note that integrating results
over the full time series brings more variability than averaging results over the last years of
simulations.

The probability that red grouper is not being overfished was evaluated because the

GMFMC'’s Reef Fish Management Plan requires fish stocks to be rebuilt whenever they are
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declining. This performance metric was calculated by determining the probability that the
SSB of red grouper is above its SSBmsy over the period under consideration (i.e., the first 10 or
20 years of simulations or the 30 years of simulations, depending on whether a short-term, a
medium-term or a long-term perspective is adopted, respectively).

The probability that red grouper is not undergoing stock collapse was assessed because
the GMFMC'’s Reef Fish Management Plan states that the risk of collapse of red grouper,
defined as the probability that SSB is lower than SSB2o%spr (the SSB at which SSBR is at 20%
of its unfished value), should be avoided. Therefore, we calculated the probability that red
grouper is not undergoing stock collapse as the probability that the SSB of red grouper is
above its SSB2o%spr OVer the period under consideration.

We estimated the NPV of discounted revenues from red grouper catch from a short-
term, a medium-term and a long-term perspective, because the GMFMC’s Reef Fish
Management Plan encourages the maximization of net economic benefits from the reef fish
fisheries of the GOM. The NPV of discounted revenues from red grouper catch (in U.S.

dollars, $) is given by (Punt et al., 2012):

NPV = Z @) yﬂ

where p is the ex-vessel price per ton of red grouper catch (in $); C, is red grouper catch in

tons in year y; and r is the discount rate. To calculate p, we assumed an ex-vessel price per ton

of red grouper catch of $3, based on http://www.nationalfisherman.com/november-

2013/2337-market-reports. Discount rates of 0.028, 0.031 and 0.034 were used following U.S.

Office of Management and Budget Guidance (OMB, 2015) to reflect the economic effects of
time preference over the short-term, medium-term and long-term, respectively.
We evaluated the stability of red grouper catch, because inter-annual variability of

fisheries catches is a concern for fisheries managers and fishing industry representatives that
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is typically taken into account in the MSE process (A’ mar et al., 2010; Punt, 2011; Punt et al.,
2014; Tong et al., 2014; Schirripa, 2015). We calculated the stability of red grouper catch as
the inverse of the coefficient of variation of red grouper catch over the period under
consideration.

Finally, we assessed the mean biomasses and mean catches of other predators and
forage fish, because other large predators have a high economic value and forage fish are the
essential food source of large predators and charismatic animals not explicitly considered in
OSMOSE-WEFS (e.g., marine mammals and seabirds). It is therefore desirable to keep the
biomasses and catches of other predators and forage fish at the highest levels possible when
red grouper is allowed to rebuild through a TAC strategy.

The eight performance metrics were displayed in the form of boxplots (Dichmont et
al., 2008; Punt et al., 2014), and their medians were shown on a radial graph. Radial graphs
are figures classically used to communicate MSE results to fisheries managers and other
stakeholders for their ease of visualization (Fulton et al. 2014; Punt et al., 2014). Before being
displayed on radial graphs, the median estimates of six performance metrics, namely the NPV
of discounted revenues from red grouper catch, the stability of red grouper catch, and the
mean biomasses and catches of other large predators and forage fish, were standardized to
their maximum values across a range of scenarios. This transformation ensured that the value
of the six performance metrics ranged between 0 and 1 on the radial graphs, where 0 reflects
poor performance and 1 reflects good performance (Fulton et al. 2014). To enable the
visualization and comparison of the outcomes of the simulations run to address Questions 1
and 2 in the same figure, the medians of the six performance metrics were normalized over all
P* values, all perspectives (i.e., short-term, medium-term, and long-term) and all
environmental contexts (i.e., presence or absence of episodic events of M). To visualize the

outcomes of the simulations run to address Question 3, the medians of the six performance
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metrics were normalized over all P* values, all perspectives and all TAC update scenarios
(i.e., red grouper TAC updated every year, every three years, every five years, or every three
years and every year following an episodic event of M).

Moreover, a composite performance index was computed as the sum of the eight
performance metrics (standardized in the case of the NPV of discounted revenues from red
grouper catch, the stability of red grouper catch, and the mean biomasses and catches of other
large predators and forage fish). The purpose of this composite index is to try to identify,

among a set of TAC strategies, the one that performs best (lanelli et al., 2011).

3. Results
3.1. Reference points

An equilibrium catch curve (i.e., fisheries catches at equilibrium as a function of
annual fishing mortality rate), as well as SSB and SPR at equilibrium as a function of annual
fishing mortality rate, were constructed for red grouper using OSMOSE-WFS (Fig. 6). From
the equilibrium catch curve, the Fmsy and MSY of red grouper were estimated to be 0.13 year
and 4,482 tons, respectively (Fig. 6a). Given that the annual fishing mortality of red grouper
in the baseline (current) configuration of OSMOSE-WFS (Feurrent) is equal to 0.22 year
(Appendix D), then OSMOSE-WEFS predicts that Feurrent / Fmsy = 1.69 for red grouper, i.e., that
GOM red grouper was experiencing overfishing in the 2000s. From the curve giving SSB as a
function of annual fishing mortality rate, the SSBmsy 0f red grouper was determined to be
equal to 28,225 tons (Fig. 6b).

The annual fishing mortality rate at which SPR reaches 20%, F2ox%spr, Was estimated to
be 0.22 year (Fig. 6¢). From the curve giving SSB as a function of annual fishing mortality
rate, we determined that the SSB of red grouper at 20% SPR, SSB2ow%srr, is equal to 13,139

tons (Fig. 6b).
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3.2. Impacts of the buffer on the performance of TAC strategies

Red grouper catch is initially decreased and then gradually increases over time, for all
P* values, i.e., for all values of the buffer between the OFL and the ABC (Fig. 7a). Usually,
the higher the P* value (i.e., the lower the buffer value), the higher the red grouper catch. Red
grouper catch is initially decreased by 37% when P* is set to 0.5 (i.e., when the buffer equals
0), by 42% when P* is set to 0.4 (i.e., when the buffer equals 0.09), and by 48% when P* is
set to 0.3 (i.e., when the buffer equals 0.17). Red grouper catch exceeds its initial level after
10 years of simulations, for all P* values. It plateaus at 1.35 times its initial level starting from
year 22 when P* = 0.5, at 1.23 times its initial level starting from year 19 when P* = 0.4, and
at 1.12 times its initial level starting from year 13 when P* = 0.3 (Fig. 7a).

Red grouper biomass increases substantially over time, for all P* values (Fig. 8a). The
lower the P* value, the higher the red grouper biomass. At the end of simulations, red grouper
biomass reaches 2.45 times its initial level when P* is set to 0.5, 2.75 times its initial level
when P* is set to 0.4, and 3.36 times its initial level when P* is set to 0.3 (Fig. 8a).

Red grouper fishing mortality rate decreases substantially at the beginning of
simulations, when OSMOSE-WEFS starts communicating with the MP, for all P* values (Fig.
9a). Then, until the middle of the period of simulations, red grouper fishing mortality rate
fluctuates around 0.98 times Fnsy when P* = 0.5, 0.84 times Fnsy when P* = 0.4, and 0.77
times Fmsy When P* = 0.3, before decreasing (Fig. 9a).

The biomass and catch of other large predators initially increase slightly and then
decrease for all P* values (Figs. 7b and 8b). The lower the P* value, the lower the biomass
and catch levels of other large predators at the end of simulations (Figs. 7b and 8b).

The biomass and catch of small predators and forage fish are relatively insensitive to

changes in red grouper biomass and the value of P* (Figs. 7c-d and 8c-d). The biomass and
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catch of small predators tend to diminish slightly over time, except when P* is equal to 0.5,

where they initially increase slightly before decreasing slightly (Figs. 7c and 8c). Moreover,
changes in red grouper biomass and the value of P* have virtually no impact on the biomass
and catch of forage fish (Figs. 7d and 8d).

Performance metrics indicate that, the lower the P* value, the higher the probabilities
that red grouper is not being overfished and that red grouper is not undergoing stock collapse
(Figs. 10a-b and 11a-c). Conversely, the lower the P* value, the smaller the median value of
NPV of discounted revenues from red grouper catch and the smaller the stability of red
grouper catch (Figs. 10c-d and 11a-c). However, differences in terms of NPV of discounted
revenues from red grouper catch and stability of red grouper catch are relatively small from
one P* value to another (Figs. 10c-d and 11a-c). NPV of discounted revenues from red
grouper catch are low under a short-term perspective, and are slightly higher under a medium-
term than under a long-term perspective (Fig. 10c). Finally, there are virtually no differences
between the median biomasses and catches of other large predators and forage fish predicted
for the different P* values (Figs. 11a-c).

The highest composite performance index was obtained for the smallest P* value (i.e.,
0.3), under the medium-term and long-term perspectives, but not under the short-term
perspective where a P* of 0.3 resulted in the smallest composite performance index (Table 2).
This result is due to the fact that, under the short-term perspective, setting P* to 0.3 leads to a
lower stability of red grouper catch than setting P* to a higher value (Fig. 11a). The
composite performance indices computed for P* = 0.4 and P* = 0.5 are similar under the
medium-term and long-term perspectives. This primarily stems from the fact that, under the
medium-term and long-term perspectives, differences between the probability that red grouper

is not being overfished predicted when P* = 0.3 and that predicted when P* = 0.5 are large,
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while differences between the probability that red grouper is not being overfished predicted

when P* = 0.4 and that predicted when P* = 0.5 are relatively small (Figs. 11a-c).

3.3. Performance of TAC strategies in the presence of episodic events of natural mortality

Red grouper biomass is lower in the presence of episodic events of M, for all P*
values (Figs. 8e vs 8a). The occurrence of episodic events of M is followed by temporary
decreases in red grouper biomass (Fig. 8e). Red grouper biomass at the end of simulations is
18%, 14% and 15% lower in the presence of episodic events of M, when P* is set to 0.3, 0.4
and 0.5, respectively.

Episodic events of M have a negative impact on red grouper catch for all P* values
(Figs. 7e vs 7a). Red grouper catch exceeds its initial level after 16 years of simulations in the
presence of episodic events of M, whereas this occurred after 10 years of simulation in the
absence of episodic events of M. Moreover, red grouper catch reaches a plateau later in the
presence of episodic events of M. Also, when P* is equal to 0.5 (i.e., when the buffer equals
0), red grouper plateaus at 1.19 times its initial level in the presence of episodic events of M
vs.1.35 times its initial level in the absence of episodic events of M (Figs. 7e vs. 7a).

Red grouper fishing mortality rate is higher in the presence of episodic events of M,
for all P* values (Figs. 9b vs 9a). In particular, when episodic events of M occur and P* is set
to 0.5, red grouper fishing mortality rate fluctuates around Fmsy during the 30 years of
simulation to reach 0.96*Fnmsy at the end of simulations (Fig. 9b).

Episodic events of M, which affect only red grouper in our simulations, tend to have a
positive impact on the biomass and catch of the other HTL groups represented in the
OSMOSE-WFS model, for all P* values (Figs. 7f-h vs. 7b-d and 8f-h vs. 8b-d). Declines in
the biomass and catch of other large predators are less pronounced in the presence of episodic

events of M (Figs. 7f and 8f). The biomass and catch of small predators remain above their
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initial levels in the presence of episodic events of M, while they tend to decrease slightly in
the absence of episodic events of M (Figs. 7g vs. 7c and 8g vs. 8c). The biomass and catch of
forage fish are virtually insensitive to changes in red grouper biomass both when episodic
events of M are present or absent (Figs. 7d and h and 8d and h).

The occurrence of episodic events of M does not have a large impact on performance
metrics (Figs. 10 and 11). The noticeable differences between the scenarios where episodic
events of M occur and those where episodic events of M do not occur are that, for all P*
values: (1) the probability that red grouper is not being overfished strongly decreases in the
presence of episodic events of M (Figs. 10e vs. 10a); (2) the NPV of discounted revenues
from red grouper catch decreases slightly in the presence of episodic events of M (Figs 10g
vs. 10c); and (3) the stability of red grouper catch increases slightly in the presence of
episodic events of M for P* = 0.4 (Figs. 10h vs. 10d).

In the presence of episodic events of M, the highest composite performance index was
obtained for P* = 0.5 under the short-term perspective, and for P* = 0.4 under the medium-
term and long-term perspectives (Table 2). This result essentially stems from the fact that the
NPV of discounted revenues from red grouper catch and the stability of red grouper catch are
higher when P* is set to 0.4 or 0.5 than when it is set to 0.3 (Figs. 11d-f). However, the
differences between the composite performance indices computed for P* = 0.3 and P*=0.4
are very small under the medium-term and long-term perspectives (Table 2), because of the
stronger positive impact of P* = 0.3 on the probability that red grouper is not being overfished

(Figs. 11e-1).

3.4. Impacts of the frequency of TAC updates in a context of episodic events of natural

mortality
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The frequency of TAC updates has a limited impact on the biomass, catch and fishing
mortality rate of red grouper in a context of episodic events of M (Figs. 12 and 13). During
the 30 years of simulation, updating red grouper TAC every year generally leads to higher red
grouper catch than updating red grouper catch every 3 years, while updating red grouper TAC
every 5 years generally results in lower red grouper catch (Figs. 12a-c). Moreover, the
“reactive TAC strategy” consisting of updating red grouper TAC every 3 years and every year
following an episodic event of M general leads to lower red grouper catch than the strategy
consisting of updating red grouper TAC every 3 years only. However, differences are minute
from one TAC update scenario to another (Figs. 12a-c). Red grouper biomass levels are
similar from one TAC update scenario to another, although the lowest red grouper biomass
levels are generally obtained when the reactive TAC strategy is implemented (Figs. 12d-f).

The decline in the biomass and catch of other large predators that accompanies
changes in red grouper biomass is less pronounced when red grouper TAC is updated every
year than when it is updated every three years, and more pronounced when it is updated every
5 years (Fig. E). Yet, differences are small from one TAC update scenario to another.
Moreover, the frequency of TAC updates in a context of episodic events of M does not affect
the biomass and catch of small predators and forage fish (Figs F and G).

Overall, the frequency of TAC updates does not have a large impact on performance
metrics (Figs. 14 and H, I, J and K). The only noticeable - but very small - differences
between TAC update scenarios are that: (1) the highest NPV of discounted revenues from red
grouper catch and stability of the catch are usually obtained when red grouper TAC is updated
every year; and (2) these two performance metrics are usually larger when the reactive TAC
strategy is implemented than when red grouper TAC is updated every 3 years or every 5 years
(Figs. 14 and H). In general, the TAC strategy consisting of updating red grouper TAC every

year has the highest composite performance index, followed by the reactive TAC strategy,
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regardless of the value of P* and the perspective adopted (i.e., short-term, medium-term or

long-term) (Table 3).

4. Discussion

In the present study, we introduced the MSE framework designed for the OSMOSE
modeling platform. This MSE framework is relatively simple and currently does not include
an assessment model. We applied this MSE framework to the OSMOSE-WFS model for red
grouper, as a first test case study. The MSE conducted for red grouper must be considered
preliminary and strategic (sensu Plaganyi (2007) and Fulton (2010)); it intends to provide
broad, qualitative insights into the potential impacts of a few TAC strategies implemented for
red grouper, under a very specific set of assumptions (Butterworth and Punt, 1999; Kraak et
al., 2008, 2010; Fulton et al., 2014; Punt et al., 2014). Below, we discuss the findings gleaned
from applying the OSMOSE MSE framework to red grouper and how future research could
provide more insights into the possible impacts of TAC strategies for the species. Then, we

give a few perspectives for the OSMOSE MSE framework.

4.1. Application of the OSMOSE MSE framework to red grouper

The equilibrium catch curve of GOM red grouper constructed with OSMOSE-WFS
indicates that the fish population was undergoing overfishing in the 2000s from an ecosystem
perspective. This result is in agreement with Grass et al. (2016), while the 2009 stock
assessment of GOM red grouper suggests that the fish population was experiencing
overfishing until 2005 (SEDAR, 2009) and the 2015 assessment suggests that the fish
population was not undergoing overfishing in the 2000s, except in 2005 (although this last
result is an artifact due to the fact that red tide was treated as a pseudo-fishing fleet in the

assessment model) (SEDAR 42, 2015). Thus, the MSE framework applied to red grouper
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starts from a steady state where red grouper is undergoing overfishing. Consequently, red
grouper catch is initially decreased when OSMOSE-WFS communicates with the MP.
Moreover, we determined that the annual fishing mortality rate of red grouper before
OSMOSE-WES starts communicating with the MP is equal to the annual fishing mortality
rate at which red grouper SPR reaches 20%. Therefore, the MSE framework applied to red
grouper also starts from a steady state where red grouper is at risk of collapse. Finally, red
grouper SSB before OSMOSE-WFS starts communicating with the MP was much higher than
the critical level of SSB below which no fishing should occur (i.e., SSBcrit); Also, red grouper
SSB never fell below SSBcrit when OSMOSE-WFS was communicating with the MP, under
all scenarios, even in the presence of episodic events of M. Therefore, the ABC of red grouper
dictated by the MP was always greater than zero under all the scenarios considered in the
present study.

The MSE simulations conducted in the present study indicate that, after initially
decreasing, red grouper catch gradually builds up, for all P* values, i.e., for all buffer values
between the OFL and the ABC. Initial decreases in red grouper catch, which are significant
(37 to 48%), enable red grouper biomass to substantially rebuild and red grouper catch to
exceed its initial level in the medium term (i.e., after 10 to 20 years of simulations). We found
that, the higher the P* value, i.e. the lower the buffer between the OFL and the ABC, the
lower the initial reduction in red grouper catch. Furthermore, the higher the P* value, the
larger the red grouper catch, the higher the NPV of discounted revenues from red grouper
catch, and the more stable the red grouper catch. Thus, larger P* values result in higher catch-
related metrics for red grouper. By contrast, the lower the P* value, the larger the red grouper
biomass and the probability that red grouper is not being overfished. Thus, smaller P* values
result in higher biomass-related metrics for red grouper, and the choice of a buffer value and,

therefore, precautionary fisheries management, imposes a trade-off between biomass-related
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and catch-related metrics for red grouper. These results concur with those of previous MSE
studies (Shertzer et al., 2008, 2010; Punt et al., 2012).

As in Griss et al. (2016), we found that modifications in the fishing mortality of red
grouper are accompanied by significant changes in the biomass and catch of other large
predators, due to competition for food and predation by red grouper upon the juveniles of
other large predators. On the other hand, the biomass and catch of forage fish, which are the
major prey of all large predators, do not vary to any significant degree when the fishing
mortality of red grouper is altered (Gruss et al., 2016). The absence of trophic cascade in
response to changes in red grouper fishing mortality stems from the high complexity and high
redundancy of the system modeled in OSMOSE-WFS (Grdiss et al., 2016). Observations for
other large predators and forage fish apply regardless of the occurrence or absence of episodic
events of M and of how frequently the TAC of red grouper is updated.

The performance of the TAC strategies for red grouper for different P* values
(different buffer values) was evaluated through eight performance metrics and a composite
performance index, which is the sum of the eight performance metrics. The four performance
metrics related to other species (i.e., the mean biomasses and catches of other large predators
and forage fish) did not vary significantly from one buffer value to another, nor in the
presence vs. absence of episodic events of M and from one TAC update scenario to another.
The P* value associated with the highest composite performance index depended on the
occurrence or absence of episodic events of M and the perspective adopted (i.e., short-term,
medium-term or long-term). Unfortunately, the composite performance index computed in
this study cannot be used to identify the best performing TAC strategies, i.e., TAC strategies
balancing biomass-related and catch-related outcomes, since, as we saw earlier, the P* value
assumed involves a trade-off between biomass-related and catch-related metrics for the

species targeted by management efforts.
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All the results discussed above consider both the short-term and the medium- and
long-terms. However, managers and fishing industry representatives are often concerned with
the short-term impacts of fisheries management measures (Kell et al., 2003; Holland, 2010;
Punt et al., 2012). The simulated NPV of discounted revenues suggest that adopting TAC
strategies using a simple “broken-stick harvest control rule” entails substantial losses in
fisheries revenues in the short term (Figs. 10c and g and 14c, g and k). Even if these short-
term losses were compensated by large increases in revenues in the medium- to long-term,
managers and fishing industry representatives may still gauge TAC strategies based primarily
on their short-term impacts on fisheries. Therefore, it would be useful to run additional
simulations for red grouper comparing the short-term fisheries effects of TAC strategies
involving different decision rules (see the next subsections).

Episodic events of M reduced the biomass of red grouper and significantly increased
the probability of red grouper being overfished, as well as the probability of red grouper
undergoing overfishing (Figs. 9b and 13), for all buffer values. This result suggests that, in the
face of potential episodic M additional to baseline natural mortality, the GMFMC’s SSCs
should employ a greater buffer between the OFL and the ABC, so as to ensure that the
probability of red grouper not undergoing overfishing remains at its expected level. Episodic
events of M also had a negative impact on red grouper catch and the NPV of discounted
revenues from red grouper catch. However, these events had a slightly positive effect on the
stability of red grouper catch. This last result stems from the fact that episodic events of M
decrease the SSB of red grouper to a level that leads the MP to prescribe a TAC for red
grouper lower than would have been prescribed in the absence of episodic events (Figs. 7e vs.
7a).

The frequency of TAC updates in a context of episodic events of M was found to have

a non-significant impact on biomass-related and catch-related metrics for red grouper and was
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not affected by the buffer value. In general, updating red grouper TAC every year or a
reactive TAC strategy consisting of updating the TAC of red grouper every three years and
after every episodic event of M resulted in higher red grouper catch, NPV of discounted
revenues and/or red grouper catch stability compared to updating the TAC of red grouper
every three years or every five years. However, differences between TAC update scenarios
are small. Moreover, increasing the frequency of TAC updates would entail significant costs
in the real world. Therefore, our results suggest that there is no benefit in increasing the
frequency of TAC updates for GOM red grouper. These results concur with those of Kell et
al. (2003), who found that the frequency of TAC updates for Atlantic tuna stocks was less
important for a successful management strategy than other MSE features, such as the proxy

used for MSY.

4.2. Limitations of the MSE conducted for red grouper and perspectives

The MSE carried out here uses a relatively simple MSE framework that does not
include an assessment model. Yet, based on the outcomes of previous MSE studies (Kell et
al., 2003; Shertzer et al., 2008, 2010; Punt et al., 2012), we suspect that future MSE
simulations should not alter the main findings of the present study, i.e., that: (1) in the face of
potential episodic M (in addition to baseline natural mortality), the GMFMC’s SSCs should
employ a greater buffer between the OFL and the ABC, so as to ensure that the probability of
red grouper not undergoing overfishing remains at its expected level; and (2) updating red
grouper TAC more frequently than every three years in a context of environmental changes
may not have a large impact on biomass-related and catch-related metrics for red grouper. The
limitations of the MSE conducted in the present study include: (1) a simplification of the
process establishing a TAC for GOM red grouper; (2) the exploration of a limited number of

management and environmental scenarios; (3) the lack of significant differences in the value
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of several performance metrics from one scenario to another; and (4) the representation in the
OSMOSE-WEFS model of dynamics on the West Florida Shelf for the 2000s, which may have
changed since then.

The determination of TACs and OFLs in the U.S. is more complex than simulated in
the OSMOSE MSE framework (MSRA, 2006; Federal Register, 2008; Holland, 2010). First,
in the U.S., the TAC is an acceptable catch limit (ACL), which takes into account both
scientific and implementation uncertainties, as opposed to an ABC, which considers only
scientific uncertainty (Caddy and Mahon, 1995; Prager and Shertzer, 2010; Shertzer et al.,
2010). The SSCs determine an ABC from the OFL based on P* and other factors, and then the
Fishery Council decides upon an ACL based on the acceptable probability P** that the ACL
will exceed the ABC (Shertzer et al., 2010). Some authors (Prager and Shertzer, 2010;
Shertzer et al., 2010) suggest the use of the acceptable probability that the ACL will exceed
the OFL, P***, to directly transition from the OFL to the ACL. The OSMOSE MSE
framework could easily prescribe an ACL from the OFL based on P***, which would
basically be P* increased to account for implementation uncertainty (Prager and Shertzer,
2010; Shertzer et al., 2010). Second, the estimation of an OFL for an assessed U.S. fish
population is more sophisticated than what is currently implemented in the OSMOSE MSE
framework (Holland, 2010; Punt, 2011). This estimation is carried out in two steps. The first
step involves an assessment of the fish population to determine its status. The second step
consists of defining Fiim based on the status of the fish population. If the fish population is not
overfished, then Fiim is the Fmsy Of the population or a proxy of it; otherwise, simulations are
conducted to determine a value for Fiim which would allow the population to rebuild over a
certain time frame (Holland, 2010; Punt, 2011). The computations of these two steps within
the MP coupled to OSMOSE could be implemented by integrating an assessment model

within the MP (see the next subsection).
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In this study, we carried out an MSE for red grouper under a limited number of
management and environmental scenarios, since the primary intentions of the present paper
were to introduce the OSMOSE MSE framework and to test this framework for the first time.
First, only one scenario of episodic events of M thought to affect red grouper biomass was
considered; it would be informative to evaluate TAC strategies for red grouper under
contrasting scenarios of how environmental events affect the species. It was assumed in the
present study that episodic M is additional to any baseline natural mortality, which is certainly
the case with most anthropogenic mortality events. However, it is possible that species
adapted to naturally occurring episodic mortality events may have higher productivity and
hence the assumption of simply additive natural mortality may not be correct. Research is
ongoing as to whether red grouper is adapted to episodic events of M due to red tides, which
should be taken into consideration in future studies conducting MSE for red grouper.
Furthermore, in the present study, for simplicity, episodic events of M were assumed to have
an effect on red grouper only, although many other functional groups of the West Florida
Shelf are likely to be affected by such events (Gray, 2014; Sagarese et al., 2015; Driggers et
al., 2016); future MSE runs for red grouper should take this possibility into account and assess
how this impacts MSE outcomes. Also, only one decision rule, the broken-stick harvest
control rule, was implemented in the MP developed for the present study; further discussions
with the GMFMC’s SSCs will be useful to determine which additional decision rules could be
integrated into the OSMOSE MSE framework for red grouper. Finally, only three buffer
values (0.17, 0.09, and 0) were considered in the present paper, assuming that P* is equal to
0.3, 0.4 or 0.5, and that oorc equals 0.36 (following the recommendations of Ralston et al.
(2011)). A MSE should be conducted for red grouper for other buffer values, especially under
the assumption that corL may be greater than 0.36. The use of a oorL greater than 0.36 may be

relevant, because Ralston et al. (2011)’s methodology for estimating sorL ignores some of the
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components of scientific uncertainty, including forecast uncertainty and uncertainty in
computing optimal harvest rates.

The value of some of the performance metrics often did not differ significantly from
one scenario to another in the present study. In particular, the mean biomasses and fisheries
catches of other large predators and forage fish showed very limited variation between the
different scenarios. Thus, the composite performance index developed in the present study
cannot reliably discriminate between “high” and ”low” performing TAC strategies. The eight
performance metrics considered in the presence study were selected based on the concerns of
fisheries managers and other stakeholders; further discussions with stakeholders and test
simulations are needed to identify other performance metrics that may show more contrast
from one scenario to another.

The current OSMOSE-WFS model simulates dynamics on the West Florida Shelf in
the 2000s. The MSE conducted for GOM red grouper in this study starts from a steady-state
where the fish population is experiencing overfishing, while the 2015 stock assessment of
GOM red grouper suggests that the fish population has not been undergoing overfishing since
1996, except in 2005 (SEDAR 42, 2015). The 2015 assessment of GOM red grouper also
suggests that the fish population is not undergoing overfishing in the 2010s (SEDAR 42,
2015). Therefore, it would be advantageous to update OSMOSE-WFS so that the model
represents dynamics of the West Florida Shelf in the 2010s, and then run MSE for red grouper
with this updated model to assess how TAC strategies perform in a system that better reflects

current conditions in the West Florida Shelf ecosystem.

4.3. Perspectives for the OSMOSE MSE framework
The creation of an MSE framework for OSMOSE enabled the implementation of two-

way interactions between HTL groups and fisheries managers in the modeling platform,
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which were previously missing. Thus, through the development of an MSE framework, the
end-to end modeling approach OSMOSE is now better able to provide advice for EBFM.
MSE has long been integrated into the Atlantis end-to-end modeling platform (Fulton et al.,
2007, 2011, 2014). Moreover, a MSE module is currently being developed and tested for the
EwE modeling platform, which establishes fishing effort levels based on TACs derived from
harvest control rules (Steenbeek et al., 2016). Therefore, it will soon be possible to conduct
multi-model evaluations of fishing management strategies, using OSMOSE, Atlantis and
EwE; multi-model MSEs will better evaluate uncertainties around the potential impacts of
TACs and other fisheries management measures (Kell et al., 2007; Townsend et al., 2014).

The current OSMOSE MSE framework accounts for uncertainty in stock assessments
and includes observation and implementation errors. Moreover, because OSMOSE is a
stochastic modeling approach, the natural variability of the system modeled in an OSMOSE
model can be quite high, as illustrated by the boxplots presented in the present study (Figs. 10,
14 and H). To account for the quite high natural variability in OSMOSE and be able to
discuss the results of the OSMOSE MSE framework based on hundreds of simulation, we
implemented the OSMOSE MSE framework on a cluster of calculations. Although radial
graphs based on median performance measures are the classical figures used to communicate
MSE results to fisheries managers and other stakeholders, boxplots should always be
produced to report the variability of the results of the OSMOSE MSE framework due to
OSMOSE stochasticity. Median time trajectories supplemented with shaded swathes
representing percentiles (A’mar et al., 2010; lanelli et al., 2011; Punt, 2011) would also be
desirable in future studies using the OSMOSE MSE framework.

The impacts of the sampling, assessment and implementation processes on the
outcomes of the OSMOSE MSE framework should be better understood and represented. In

the present study, observation and implementation errors were both set to zero. In future
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studies, it would be advantageous to investigate the impacts of non-zero observation and
implementation errors and of the length of the observation time series considered by the MP
on the performance of fisheries management strategies. A number of modifications could also
be introduced in the OSMOSE MSE framework, including the incorporation of an assessment
model into the MP, and the development of more sophisticated sampling and implementation
processes. First, a MP often integrates an assessment model, which determines the status of
the fish populations under consideration and, eventually, runs projections to generate an
estimate of Fiim or OFL (Sainsbury et al., 2000; Kell et al., 2003, 2007; Holland, 2010; Punt,
2011). The use of an assessment model in the OSMOSE MSE framework would entail: (1)
making the sampling module communicate with the assessment model, which would then
deliver a Fiim or an OFL; and (2) estimating reference points for the OSMOSE MSE
framework with the assessment model rather than with OSMOSE; reference points in that
case should be dynamic and updated within the MSE loop, since natural mortality rates in
OSMOSE change over time. Second, the sampling and implementation processes are
represented in a very simple way in the current OSMOSE MSE framework through the use of
log-normally distributed errors. In the future, it would be interesting to design a sampling
module within OSMOSE itself, which would simulate the spatio-temporal dynamics of
research surveys. Such an endeavor would enable an evaluation of research monitoring
programs (Sainsbury et al., 2000; Holland, 2010). Moreover, fishers could become explicit
components of the OSMOSE modeling platform, and the simulation of their behavior could
account for implementation uncertainty in lieu of the implementation module of the current
OSMOSE MSE framework. The integration of fishers as explicit components of OSMOSE
and the simulation of their behavior would also address the issue of the simplistic assumption

currently made in OSMOSE that fishing mortality is distributed uniformly over space.
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Figure captions

Fig. 1. Flowchart of the framework designed to conduct management strategy
evaluation (MSE) with the OSMOSE modeling platform. SSB = spawning stock biomass
— F = fishing mortality rate — TAC = total allowable catch — Focal functional groups = high

trophic level functional groups targeted by management efforts.
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Fig. 2. Example of decision rule implemented in the OSMOSE management strategy
evaluation (MSE) framework. The decision rule displayed here is the “broken-stick harvest
control rule”, which determines a catch limit (overfishing limit or OFL) based on a spawning
stock biomass (SSB) level and reference points including: (1) MSY, the maximum sustainable
yield (MSY); (2) SSByusy, the SSB at the annual fishing mortality rate resulting in MSY; and

(3) SSBcis, the critical level of SSB below which no fishing should occur.
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Fig. 3. Map of the West Florida Shelf showing the spatial cells of the OSMOSE-WFS
model (filled in dark grey). The spatial domain of OSMOSE-WFS extends from
approximately 25.2° N to 31°N in latitude and from approximately 80.2°W to 87°W in

longitude and comprises 465 square cells in a grid with closed boundaries.
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Fig. 4. Method used for setting the acceptable biological catch (ABC) of red grouper
(Epinephelus morio) from an overfishing limit (OFL) and a buffer. (a) The buffer between
the OFL and the ABC is calculated from the probability of overfishing considered acceptable
(P*) and the standard error of the log of the distribution of OFL (oorz), under the assumption
that the OFL is lognormally distributed. (b) Given the distribution of OFL governed by corr,

ABC is determined so that the probability of ABC exceeding OFL is equal to P*.
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Fig. 5. Scenario of episodic events of natural mortality considered in the present study.
This scenario assumes that the natural mortality of red grouper (Epinephelus morio) due to
causes not represented in the OSMOSE-WFS model (Maiverse) 1s increased by a factor of 16

during the last six months of years 5, 8 and 20.

49



0.025" | | .
< 0.02 ]
<
C
@]
€ 0.015 .

]
2 001 ]
©
=
0.005" .
O ] ] 1 | 1
0 5 10 15 20 25 30

Time (years)

Fig. 6. (a) Fisheries catches, (b) spawning stock biomass and (¢) spawning potential ratio
at equilibrium as a function of annual fishing mortality rate for red grouper
(Epinephelus morio), estimated with OSMOSE-WFS. For all panels, the vertical full line
indicates the annual fishing mortality rate resulting in the maximum sustainable yield of red
grouper (Fsy), while the vertical dotted line indicates the annual fishing mortality rate at

which the spawning potential ratio of red grouper reaches 20% (F202spr).
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Fig. 7. Median trajectories of catch over initial catch for (a,e) red grouper (Epinephelus
morio), (b,f) other large predators, (c,g) small predators, and (d,h) forage fish and
invertebrates, (a,b,c,d) in the absence and (e,f,g,h) in the presence of episodic events of
natural mortality (M), under three total allowable catch (TAC) scenarios tested with the
OSMOSE management strategy evaluation framework. The three TAC scenarios assume
that a TAC 1s implemented for red grouper every three years and that the oor;, parameter,
which reflects scientific uncertainty, is equal to 0.36. The probability of overfishing
considered acceptable (P*) differs between the three scenarios (0.3, 0.4, or 0.5). The median
trajectories displayed in panels (e,f,g,h) were obtained under the scenario of episodic events

of M shown in Fig. 5. One hundred simulation replicates were run to produce these plots.
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Fig. 8. Median trajectories of biomass over initial biomass for (a,e) red grouper
(Epinephelus morio), (b,f) other large predators, (c,g) small predators, and (d,h) forage
fish and invertebrates, (a,b,c,d) in the absence and (e,f,g,h) in the presence of episodic
events of natural mortality (M), under three total allowable catch (TAC) scenarios tested
with the OSMOSE management strategy evaluation framework. The three TAC scenarios
assume that a TAC is implemented for red grouper every three years and that the ogor.
parameter, which reflects scientific uncertainty, is equal to 0.36. The probability of
overfishing considered acceptable (P*) differs between the three scenarios (0.3, 0.4, or 0.5).
The median trajectories displayed in panels (e,f,g,h) were obtained under the scenario of
episodic events of M shown in Fig. 5. One hundred simulation replicates were run to produce

these plots.
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Fig. 9. Median trajectories of fishing mortality rate (F) over fishing mortality rate

resulting in maximum sustainable yield (Fy.sy) for red grouper (Epinephelus morio), (a) in

the absence and (b) in the presence of episodic events of natural mortality (M), under

three total allowable catch (TAC) scenarios tested with the OSMOSE management

strategy evaluation framework. The three TAC scenarios assume that a TAC is implemented

for red grouper every three years and that the oor. parameter, which reflects scientific

uncertainty, is equal to 0.36. The probability of overfishing considered acceptable (P*) differs

between the three scenarios (0.3, 0.4, or 0.5). The median trajectories displayed in panel (b)

were obtained under the scenario of episodic events of M shown in Fig. 5. One hundred

simulation replicates were run to produce these plots.

53



@)

E 1.6
()
1.4
2
5 Ll_51.2—
2 U
]
g
o
(]
3 -
0 5 10 15 20 25 30
Time (years)
(b)
S 1.6
Y
(e]
14
g,
9 w12
LA
2 1
T \’
'a \/\\/\_‘ \ N ‘
. 0 5 10 15 20 25 30
Time (years)
—P*=0.3
—P*=04
—P*=0.5

Fig. 10. Performance measures of three total allowable catch (TAC) scenarios tested with
the OSMOSE management strategy evaluation framework, (a,b,c,d) in the absence and
(e,f,g,h) in the presence of episodic events of natural mortality (M). The three TAC
scenarios assume that a TAC is implemented for red grouper every three years and that the
oori parameter, which reflects scientific uncertainty, is equal to 0.36. The probability of
overfishing considered acceptable (P*) differs between the three scenarios (0.3, 0.4, or 0.5).
The performance measures displayed in panels (e,f,g,h) were obtained under the scenario of
episodic events of M shown in Fig. 5. One hundred simulation replicates were run to produce
all box plots. Prob. avoid overfished = probability that red grouper is not being overfished -

Prob. avoid collapse = probability that red grouper is not undergoing stock collapse — Net
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present value = net present value of discounted revenues from red grouper catch — Stability of

the catch = stability of red grouper catch.
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Fig. 11. Median performance of three total allowable catch (TAC) scenarios tested with

the OSMOSE management strategy evaluation framework (normalized if necessary (*)

so that 1 = good and 0 = poor performance), (a,b,c) in absence and (d,e,f) in the presence

of episodic events of natural mortality (M). The three TAC scenarios assume that a TAC is

implemented for red grouper every three years and that the oorL parameter, which reflects

scientific uncertainty, is equal to 0.36. The probability of overfishing considered acceptable

(P*) differs between the three scenarios (0.3, 0.4, or 0.5). The performance measures

displayed in panels (d,e,f) were obtained under the scenario of episodic events of M shown in
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Fig. 5. One hundred simulation replicates were run to produce all radial graphs. Prob. avoid
overfished = probability that red grouper is not being overfished - Prob. avoid collapse =
probability that red grouper is not undergoing stock collapse — Net present value = net present
value of discounted revenues from red grouper catch — Stability of the catch = stability of red
grouper catch. (*) The probabilities that red grouper is not being overfished and that red
grouper is not undergoing stock collapse naturally range between 0 and 1, so these two

performance metrics were not normalized.
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Fig. 12. Median trajectories of (a,b,c) catch over initial catch and (d,e,f) biomass over
initial biomass for red grouper (Epinephelus morio), in the presence of episodic events of
natural mortality (M), under several total allowable catch (TAC) scenarios tested with
the OSMOSE management strategy evaluation framework. All TAC scenarios assume
that the oorL parameter, which reflects scientific uncertainty, is equal to 0.36, and that the

TAC of red grouper is updated every year, every three years, every five years, or every three
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years and every year following an episodic event of M. The probability of overfishing
considered acceptable (P*) is set to 0.3 for (a,d), 0.4 for (b,e) and 0.5 for (c,f). All median
trajectories were obtained under the scenario of episodic events of M shown in Fig. 5. One
hundred simulation replicates were run to produce all plots.
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Fig. 13. Median trajectories of fishing mortality rate (F) over fishing mortality rate
resulting in maximum sustainable yield (Fmsy) for red grouper (Epinephelus morio), in
the presence of episodic events of natural mortality (M), under several total allowable
catch (TAC) scenarios tested with the OSMOSE management strategy evaluation
framework. All TAC scenarios assume that the oorL parameter, which reflects scientific
uncertainty, is equal to 0.36, and that the TAC of red grouper is updated every year, every
three years, every five years, or every three years and every year following an episodic event
of M. The probability of overfishing considered acceptable (P*) is set to 0.3 for (a), 0.4 for (b)
and 0.5 for (c). All median trajectories were obtained under the scenario of episodic events of

M shown in Fig. 5. One hundred simulation replicates were run to produce all plots.
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Fig. 14. Performance measures of total allowable catch (TAC) scenarios tested with the
OSMOSE management strategy evaluation framework, in the presence of episodic
events of natural mortality (M). TAC scenarios assume that the oorL parameter, which
reflects scientific uncertainty, is equal to 0.36, and that the TAC of red grouper is updated
every year, every three years, every five years, or every three years and every year following
an episodic event of M. The probability of overfishing considered acceptable (P*) is equal to
0.3 for (a,b,c,d), 0.4 for (e,f,g,h) and 0.5 for (i,j,k,1). One hundred simulation replicates were
run to produce all box plots. Note that, for (d,h,l), extreme outliers were removed for display
purposes; these extreme outliers are displayed in Fig. H. Prob. avoid overfished = probability
that red grouper is not being overfished - Prob. avoid collapse = probability that red grouper is
not undergoing stock collapse — Net present value = net present value of discounted revenues

from red grouper catch — Stability of the catch = stability of red grouper catch.
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Tables

Table 1. High trophic level (HTL) groups explicitly considered in the OSMOSE-WFS
model. Species of a given HTL group exhibit similar life history characteristics, body size
ranges, diets and exploitation patterns. Some individual species constitute their own group, as
they are emblematic to the West Florida Shelf and of high economic importance. A reference
species was identified for each of the HTL groups (indicated in bold). Growth, reproduction,
mortality and diet parameters of each group are those of the reference species of the group
(given in Appendix D). The category of each HTL group (“large predator”, “small predator”,

or “forage fish and invertebrates”) is indicated.
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HTL group

Category of HTL
group

Species

King mackerel

Large predator

King mackerel (Scomberomorus cavalla)

Amberjacks

Large predator

Greater amberjack (Seriola dumerili) , banded
rudderfish (Seriola zonata), lesser amberjack (Seriola
fasciata)

Red grouper

Large predator

Red grouper (Epinephelus morio)

Gag grouper

Large predator

Gag grouper (Mycteroperca microlepis)

Red snapper

Large predator

Red snapper (Lutjanus campechanus)

Sardine-herring-scad complex

Forage fish and
invertebrates

Scaled sardine (Harengula jaguana), Spanish
sardine (Sardinella aurita), Atlantic thread herring
(Opisthonema oglinum), round scad (Decapterus
punctatus), menhadens (Brevoortia sp.)

Anchovies and silversides

Forage fish and
invertebrates

Bay anchovy (Anchoa mitchilli), striped anchovy
(Anchoa hepsetus), silversides (Atherinidae spp.),
alewife (Alosa sp.)

Coastal omnivores

Forage fish and
invertebrates

Pinfish (Lagodon rhomboides), spottail pinfish
(Diplodus holbrooki), orange filefish (Aluterus
schoepfii), fringed filefish (Monacanthus ciliatus),
planehead filefish (Monacanthus hispidus),
orangespotted filefish (Cantherhines pullus),
honeycomb filefish (Acanthostracion polygonius),
Atlantic spadefish (Chaetodipterus faber), scrawled
cowfish (Lactophrys quadricornis), pufferfish
(Tetraodontidae spp.)

Reef carnivores

Small predators

White grunt (Haemulon plumieri), black sea bass
(Centropristis striata), rock sea bass (Centropristis
philadelphica), belted sandfish (Serranus
subligarius), longtail bass (Hemanthias leptus), butter
hamlet (Hypoplectus unicolor), creole fish
(Paranthias furcifer), splippery dick (Halichoeres
bivittatus), painted wrasse (Halichoeres caudalis),
yellowhead wrasse (Halichoeres garnoti), bluehead
(Thalassoma bifasciatum), reef croaker (Odontoscion
dentex), jackknife-fish (Equetus lanceatus), leopard
toadfish (Opsanus pardus), scopian fish
(Scorpaenidae spp.), bigeyes (Priacanthidae spp.),
littlehead porgy (Calamus proridens), jolthead porgy
(Calamus bajonado), saucereye progy (Calamus
calamus), whitebone progy (Calamus leucosteus),
knobbed progy (Calamus nodosus), French grunt
(Haemulon flavolineatum), Spanish grunt (Haemulon
macrostomum), margate (Haemulon album),
bluestriped grunt (Haemulon sciurus), striped grunt
(Haemulon striatum), sailor’s grunt (Haemulon
parra), porkfish (Anisotremus virginicus), neon goby
(Gobiosoma oceanops)

Reef omnivores

Forage fish and
invertebrates

Doctorfish (Acanthurus chirurgus), other surgeons
(Acanthuridae spp.), blue angelfish (Holacanthus
bermudensis), gray angelfish (Pomacanthus
arcuatus), cherubfish (Cantropyge argi), rock beauty
(Holacanthus tricolor), cocoa damselfish
(Pomacentrus variabilis), bicolor damselfish
(Pomacentrus partitus), beau gregory (Pomacentrus
leocostictus), yellowtail damselfish (Microspathodon
chrysurus), seaweed blenny (Parablennius
marmoreus), striped parrotfish (Scarus croicensis),
bidled goby (Coryphopterus glaucofraenum),
Bermuda chub (Kyphossus sectarix)

Shrimps

Forage fish and

Pink shrimp (Farfantepenaeus duorarum), brown
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invertebrates

shrimp (Farfantepenaeus aztecus), white shrimp
(Litopenaeus setiferus), other shrimp species

Large crabs

Small predators

Blue crab (Callinectes sapidus), stone crabs
(Menippe mercenaria and Menippe adina), horseshoe
crab (Limulus polyphemus), hermits crab (e.g.,
Pylopagurus operculatus and Clibanaris vittatus),
spider crabs (e.g., Stenocionops furcatus), arrow
crabs (e.g., Stenorynchus seticornis)
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Table 2. Composite performance indices for different total allowable catch (TAC)

scenarios tested with the OSMOSE management strategy evaluation framework, under

a short-term perspective (considering the first 10 years of simulations), a medium-term

perspective (considering the first 20 years of simulations), and a long-term perspective

(considering the 30 years of simulations).

Question Value of P* Index under a Index under a Index under a
addressed short-term medium-term long-term
perspective perspective perspective
How does the 0.3 6.18 6.84 6.86
value of the buffer
influence fisheries
management
performance for
red grouper?
0.4 6.21 6.78 6.80
0.5 6.29 6.75 6.79
How do TAC 0.3 6.20 6.63 6.67
strategies for red
grouper perform
in the presence of
episodic events of
natural mortality?
— Case where
episodic events of
natural mortality
occur
0.4 6.28 6.67 6.68
0.5 6.30 6.59 6.62
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Table 3. Composite performance indices for different total allowable catch (TAC)
scenarios tested with the OSMOSE management strategy evaluation framework, under
a short-term perspective (considering the first 10 years of simulations), a medium-term
perspective (considering the first 20 years of simulations), and a long-term perspective
(considering the 30 years of simulations). The question being addressed here is: “Is there a
benefit to updating the TAC of red grouper more frequently in a context of episodic events of

natural mortality?”

Value of P* Frequency of TAC Index under a Index under a Index under a
updates short-term medium-term long-term
perspective perspective perspective
0.3 Every year 6.12 6.61 6.68
Every 3 years 6.01 6.47 6.51
Every 5 years 5.88 6.42 6.47
Every 3 years + after 5.97 6.52 6.55

every episodic event of
natural mortality

0.4 Every year 6.26 6.65 6.70
Every 3 years 6.08 6.50 6.51
Every 5 years 5.89 6.35 6.37
Every 3 years + after 6.06 6.52 6.52

every episodic event of
natural mortality

0.5 Every year 6.33 6.60 6.60
Every 3 years 6.09 6.46 6.45
Every 5 years 5.96 6.40 6.37
Every 3 years + after 6.16 6.53 6.52

every episodic event of
natural mortality
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